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The Design of Optimal Lattice
Structures Manufactured
by Maypole Braiding
Beginning with the maypole braiding process and its inherent constraints, we develop a
design methodology for the realization of optimal braided composite lattice structures.
This process requires novel geometric, mechanical, and optimization procedures for com-
prehensive design-ability, while taking full advantage of the capabilities of maypole
braiding. The composite lattice structures are braided using yarns comprised of multiple
prepreg carbon fiber (CF) tows that are themselves consolidated in a thin braided jacket
to maintain round cross sections. Results show that optimal lattice-structure tubes pro-
vide significant improvement over smooth-walled CF tubes and nonoptimal lattices in
torsion and bending, while maintaining comparable axial stiffness (AE).
[DOI: 10.1115/1.4031122]

Introduction

The formidable cost of high-performance fiber composites is
aggravated by the required labor-intensive and high material costs
of their manufacturing processes. Manufacturing techniques
which are automated and which minimize material scrap can
greatly aide in this concern. Braiding of near-net-shape composite
preforms offers a mechanized and material-efficient solution to
these concerns in many cases [1]. In a composite structure, it is
desirable to place reinforcement in locations that can contribute
most to stiffness or strength for efficient use of material.

Maypole braiding is a weaving method that uses meshed gears
arranged in a circle to carry packages of yarn in interlacing pat-
terns; this arrangement is particularly suited for producing circular
fabrics (Fig. 1). We intend to show that many shapes—
geometrically suitable for high stiffness and strength—can be
made with this machine. More complex and costly three-
dimensional computer-controlled braiding machines and some
lace braiding machines are capable of creating more complex
shapes; however, the machines themselves often are quite expen-
sive and produce parts at low production rates [2,3]. It is therefore
desirable to study the extent to which a traditional braiding
machine can manufacture a “designed” composite [4]. By braid-
ing tows of carbon pre-impregnated with epoxy, a braided lattice
can be formed, which becomes a rigid structure upon curing.
Tows of different sizes can be combined to form lattice elements

of various sizes for reinforcement within different portions of the
structure.

The approach taken here is specific to beams, shafts, beam-
columns, and truss members, as might be purchased commercial
off-the-shelf. Rather than make tubular members with smooth
walls without holes, this research focuses on the use of standard
braiding machinery and methods to create a lattice braid to
improve strength/weight ratios. Improving strength-to-weight
ratios is important in minimal weight design, where the term
“specific stiffness” is used to mean stiffness per unit mass or mod-
ulus per unit density [5]. When engineering fibers and structures
made thereof, traditional density (kg=m3) is often not a useful

Fig. 1 Maypole braiding open-structure composites
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concept since it must be derived using the structure’s cross-
sectional area which is often difficult to accurately measure. Typi-
cally linear density (kg=m) is used instead. In the design of beams
and shafts, stiffness per unit linear density is the important specific
stiffness with units N �m=kg for axial loading and N m2=kg in
bending and torsion. Prior relevant work in braiding includes the
development of high-performance tethers and the development of
a lattice truss that requires manual secondary interlacing after
machine processing [6]. No rigid lattice structures have yet been
fabricated without such significant manual intervention or com-
plex 3D braiding machinery [6]. This article presents the develop-
ment of three computational models: geometry, mechanics, and
optimization tools for the design of braided open-structures.

Many braid geometry models have been explored in equations
or finite element (FE) form. Most existing analytical models are
concerned with fabrics that have very fine fibers [1,7–9]. While
useful for many preforms, these fiber models are not capable of
producing the large undulations found within the lattice tubes
when composite yarns intersect or interlace at joints (as shown
later in Fig. 3). Other simulations have been created, which
directly calculate dynamically the exact motions and geometry of
a braiding machine and the interlacing of the yarns onto a surface
[10–12]. While capable of solving for large yarns, the simulation
requires intensive computation using dynamic FE models [13].
The kinematics of the braiding machine motion has been
explored, but not developed in a general parametric manner [4].

Mechanics modeling for subsequent optimization should pro-
vide a computationally efficient simulation that adequately repre-
sents the geometry and structural fidelity of the open structure. It
is visually evident that the carbon composite yarns and the inter-
section of carbon yarns forming the joints create a space-frame
structure. This form of structure is most easily represented using
“beam” FE [14]. The element formulations useful to this work for
space frames have been derived from multiple sources [15,16].

Significant and copious research in structural optimization has
led to the realization that the optimal shape to minimize the
weight of structures is a space frame—by loading the elements
primarily in tension and compression, the material strength is fully
utilized [17]. In this work, sizing optimization techniques are
employed [18–20]. The objective is to maximize the specific stiff-
ness of the entire structure by (formally) minimizing its compli-
ance. The design variables requiring optimization are chosen in
this work to be the individual yarn cross-sectional areas within the
braid. Compliance minimization allows each yarn’s relative con-
tribution to structural stiffness to be determined, and the yarn
diameters updated accordingly, using the optimality criteria (OC)
method, which is well-suited for large structure finite-element
analysis (FEA) problems [20]. This work optimizes the structure
using conventional methods but includes the special constraints of
the braiding process.

This article presents aspects of geometry, mechanics, and opti-
mization of braided lattices. Geometric modeling with machine
parameterization is used to create an interlaced form based on the
machine kinematics. This model includes the effects of machine
geometry and interyarn tension during braiding. It is discretized
into nodes between short segments in the modeling process. An
assembly of beam FEs is built directly from the resulting geome-
try model nodes for mechanical simulation. Appropriate material
properties are given to these beam elements. This mechanical
model is compared to physical test data and is shown to accurately
predict structure stiffness for a test geometry. A sizing optimiza-
tion algorithm predicts optimal braided lattice geometries under
known loads, using OC. Finally, resulting lattice-structure tubes’
mechanical properties are compared to full-walled commercial
products.

Open-Structure Braiding Process

The braiding process involves simultaneous motions of several
machine parts (Fig. 1). Two sets of spring-loaded carriers—each

bearing spools of yarns to be braided—are passed in opposite
directions between horn gears and made to travel around a track
plate. As the carriers follow their sinusoidal paths, they release
yarn from spools wound with nearly uniform tension. These yarns
interlace each other and are pulled down toward the fell-point
where they meet and become a preform fabric. Typically the yarns
form against a mandrel, which is pulled away from the machine at
a known speed to control the braid helix angle. The mandrel cross
section can be nearly any convex shape; it is typically circular
such that the preform is cylindrical. The braid also allows the
inclusion of a third axis of yarn (in addition to clockwise
and counterclockwise), which is laid down axially along the
braiding path.

In the present work, the braided yarns consist of a prepreg car-
bon tow core inside a thin braided jacket, as described in a previ-
ous article [4]. The prepreg carbon core provides rigid structure
upon curing. The braided jacket bundles multiple tows of carbon
filaments together, allowing easy variation of yarn size and con-
straining the yarn to maintain a round cross section during braid-
ing. The yarn jacket typically consists of materials much softer
than the carbon core (such as nylon); thus, measuring a yarn’s
stiffness and dividing by the cross section to retrieve a “modulus”
is not very consistent. The most accurate method is simply to
measure and assign axial, bending, and torsional stiffness to the
beam (yarn) based on physical testing of the yarn. The relevant
properties are axial stiffness (AE), flexural stiffness (E(flex)I), and
torsional stiff (JG). Intrinsic properties (moduli E, Eflex, and G)
could be derived from these values if desired.

The bonded yarn intersections physically consist of two or three
overlapping yarns, with a thin film of resin between them. It has
been found through physical testing that the strength of joints
does not vary significantly with yarn diameter. The joint intersec-
tion will be given the effective properties of this bonded joint, dif-
ferent from those of the yarns themselves.

Geometry Model

An accurate geometry model of the final braided structure
begins by determining the controlled variables in the braiding pro-
cess. Some of these are limits of the maypole braiding process
while others are limited based on the particular machine being
used. The variables needed to fully describe a braid are given in
Table 1.

These few parameters can describe the motion of yarn carriers
on the braider. It is seen in the track-plate geometry that the car-
rier path is a sinusoid superimposed on a circle (Fig. 2). The
motion requires only one parametric equation for the radius, and a
transformation applied to it for rotation around the circle. Tradi-
tionally each horn gear has four radially directed slots spaced
90 deg apart; two adjacent slots are occupied by carriers at any
instant. Consideration of these interactions leads to the following

Table 1 Braid geometry design variables

Variable and symbol Example value

Counting variables
Parameter, t Parameter variable
Yarn location in space, Xa

n; Y
a
n ; Z

a
n or Ra

n; h
a
n; Z

a
n N/A

Carrier position # ½ � �n Varies from 1 to g
Yarn location ½ � �a Warp; weft; axial

Machine/braid dimensions
Machine diameter, D (m) 0.06
Mandrel diameter, d (m) 0.0445
Horn gear diameter, H (m) 0.01
Helix angle, w (deg) 45
Pitch (m) 0.1396
Yarn diameter, D (m) 0.002
Total horn gears, g 32
No. of horn gear slots, f 4
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newly developed parametric expression for the radius of the car-
rier path for an arbitrary machine construction:

Rwarp
n � H

2
� cos

g

2
t� np

f g

� �� �
þ D=2 (1)

Note that the position is shifted based on which number n of the g
carriers is of interest and the number of slots (or “forks”) f in each
horn gear. The path of the weft carriers is found similarly, but
must account for a phase shift (the reason carriers do not crash at
horn gear intersections)

Rweft
n � �H

2
� cos

g

2
t� np

f g
þ 2f � 1ð Þp

g

� �� �
þ D=2 (2)

The path of the warp carriers in Cartesian coordinates is simply
the transformation of R and an angular displacement that is a func-
tion of the parameter t

Xwarp
n ¼ Rwarp

n � cos �t� np
f g

� �
(3)

Ywarp
n ¼ �Rwarp

n � sin �t� np
f g

� �
(4)

Corresponding expressions for the weft carriers are derived

Xweft
n ¼ Rweft

n � cos tþ np
f g
� 2f � 1ð Þp

g

� �
(5)

Yweft
n ¼ Rweft

n � sin tþ np
f g
� 2f � 1ð Þp

g

� �
(6)

The paths these equations create mimic the track-plate shape and
carrier motion, as seen in Fig. 2.

As a final step, each yarn is carried upward in the Z direction
linearly as t increases. The wrapping (helix) angle w is related to
the yarn helical pitch through the expression

Zwarp
n ¼ Zweft

n ¼ 2t

g
� pitch ¼ 2pDt

g
tan wð Þ (7)

Axial yarns are modeled simply as vertical lines centered above
their respective horn gear locations. Equations (1)–(7) describe
the kinematic representation, as rendered in Fig. 3(a).

Open-structure braid is formed around a mandrel in production.
The combination of tension due to the carriers and wrapping
around the mandrel pulls the structure tight against the underlying

mandrel shape. Because the kinematic model was based on the
sinusoidal motion of the machine, it does not include this com-
pressive effect. The effect can be created without unnecessary
complexity of a dynamic simulation. This is accomplished in three
steps: discretization, compression, and tension.

First, each overlap of yarns is sorted and identified. Yarn paths
are discretized into short segments. The segments will later define
the beam elements of the mechanical model. It is ensured that seg-
ment nodes lie normal to yarn overlapping “joints.”

Next, joints are compressed against the mandrel as closely as
possible while preserving the stacking sequence at each. Each
yarn is considered independently with respect to its unique path
on the mandrel and contact with its interlacing partners. The
results of the artificial compression are shown in Fig. 3(b).

The artificial compression model is a significant improvement
over the machine kinematics model and represents well a structure
which has been pressed against a mandrel by vacuum bag or other
means. However, typically the final laid yarn geometry is deter-
mined by tension within the yarns during braid formation. Again,
this could be solved using contact FE methods, but an artificial
method is computationally more attractive. The path taken by ten-
sioned string or yarn is a geodesic, or shortest path, from one end
to the other under load. This is a property of all strings and cables
in tension. Interyarn tension is modeled by minimizing the free
length of the yarns in the model while maintaining interlacing and
mandrel contact constraints. The results are shown in Fig. 3(c).
Notice the much improved replication of axial yarn undulation
and the ability of the helical yarns to transition from straight to
curved as they intersect with the mandrel. Thus, a realistic compu-
tational model of the braid geometry has been achieved.

Mechanical Modeling

The mechanics model should provide a computationally effi-
cient simulation that adequately represents the geometry of the
open structure, the CF yarns which constitute the bulk of the mate-
rial, and the intersection of carbon yarns at joints that connect the
carbon yarns. The analysis must also incorporate a method for
easy application of the beam loads (uniaxial tension and compres-
sion, bending and torsion) and constraints. The loads and con-
straints will be applied only to the ends of the structure as is the
case for struts, columns, and shafts in practice.

Each single cured yarn in the structure is supported by the joint
intersections at regular intervals. This distance between supports
(i.e., yarn intersections) is long compared to the diameter of the
yarn; thus, it is assumed that the free-standing length of each yarn

Fig. 2 Kinematic equations replicate braiding machine motion
from key machine variables

Fig. 3 Three stages of the geometry modeling process: (a)
kinematics, (b) compression, and (c) tension
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can be accurately modeled as a beam. A major benefit of the beam
model is the easy incorporation of experimental yarn stiffness and
strength properties. In certain situations, the yarns paths are
straight and simply modeled as a straight beam between nodes
created in the geometry modeling process. The straight element
formulation uses Timoshenko shear-corrected beams [15]. A
curved beam formulation is used in those places where the yarn
lies against the curved mandrel surface [16].

Because they represent epoxy bonding, the intersection of joints
should have different properties than those of the yarns them-
selves. Intersections are thus modeled as straight and short beam
elements (Fig. 4), with stiffness and strength properties taken
from physical testing of the bond between the composite yarns.
Geometry and material parameters for an actual CF open-
structure construction are presented in Table 2.

Validation

The model is now validated by comparing predicted stiffness
and mass to a physical sample of a typical lattice structure. The
structures can be made in many configurations: Figure 5 shows
configurations of some of the main design parameters. The first
structure shown is a basic true triaxial [6]: eight axial yarns, four
warp, four weft, and a 45 deg helix angle. The structure can be
modified in several ways. First, helical yarns could be added to
the basic structure. Alternately, axial yarns could be added or
removed. Yet another alternative is to keep the yarn count the
same as the basic structure, but to change the helix angle. Any
combination of these is also valid.

The physical sample tested was of the same geometry as the
“base true triaxial” described in Table 2 and shown in Fig. 5. Five
specimens were fabricated, weighed (to find mass/length), and
tested in axial compression (to find structure AE), bending (EI of
structure), and torsion (JG of structure). The model matches the

experiment within the first standard deviation of physical testing
data (Table 3). More results of the tests, both physical and compu-
tational, are detailed by Gurley [22]. Manufacturing inconsisten-
cies are believed to be the primary cause of the variance and may
be improved with better braiding equipment (machines designed
for higher tension braiding) and quality control.

Optimization

The present objective is to apply established sizing optimization
techniques within the special constraints imposed by the braiding
process to create high specific stiffness structures. It was found
during the FE development previously that open-structure effi-
ciencies are always improved by the increase of mandrel diame-
ter; thus, the design diameter should be as large as the application
allows. In the first step of optimization, the ideal helix angle w is
determined by unconstrained optimization using a sweep of helix
angle as the single design variable in FEA, with the objective of
minimizing structure compliance. The primary optimization pro-
cess now focuses on determining the carrier loading positions on
the braiding machine and diameters of the yarns. The complete
optimization process follows the following outline:

Fig. 4 Example of joint-intersection beam elements

Table 2 Construction geometry and material parameters
specifications

Experimental braid geometry Material model

Mandrel diameter (mm) 31.8 Yarn AE (kN) 23.7
Helix (deg) 45 Yarn JG (N m2) 1.5
No. of warp yarns 4 Yarn EI (N m2) 80
No. of weft yarns 4 Mean diameter (mm) 2.3
No. of axial yarns 8 Linear density (g/m) 1.40
Height (cm) 100.0 Joint AE (kN) 123
Pitch (cm) 9.97 Joint EI (N m2) 0.06
No. of gears g 32 Joint JG (N m2) 0.12

Fig. 5 Major design variables of the optimal braided lattice
structure. The base true triaxial sample was manufactured for
model validation.

Table 3 Results of the validation experiment

AE (N) JG (N m2) EI (N m2) M/L (g/cm)

Experimental 1220.8 384.0 138.4 1.200
(first standard deviation) (176.5) (55.5) (20.0) (0.037)
Model results 1228.0 357.9 139.6 1.205
(% error) (0.6) (�6.8) (0.9) (0.4)

101401-4 / Vol. 137, OCTOBER 2015 Transactions of the ASME

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 08/17/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use



(1) Choose a machine and its inherent constraints such as num-
ber of yarns, maximum yarn diameter, etc.

(2) Choose the largest mandrel diameter possible for the design
application.

(3) Model a structure with all yarns as large as possible and
loaded on the machine of step #1 and using diameter from
step #2.

(4) Perform unconstrained optimization of helix angle.
(5) Find the yarns which contribute least to structural stiffness

and decrease their diameter a small amount. Find the yarns
which contribute most to structural stiffness and increase
their diameter a small amount (up to the max size allowed).

(6) Model the new structure with modifications suggested by
step #5. Repeat step #5 until the solution converges.

The remainder of this description of optimization focuses on
the complexity and proper mathematical treatment of step #5.

The formal optimization statement is

minx : c dð Þ � UTKU ¼
XNs

i¼1

XNy

e¼1

uT
e;ike;iue;i

subject to :
V dð Þ
V0

¼ �

KU ¼ F

0 < dmin < d < d0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(8)

All driving equations are expressed in terms of the design vari-
able d, the vector of all yarn-diameters-squared (the reason for
this choice of design variable is explained in the subsequent para-
graph). The objective is to minimize the external energy or
“compliance” cðdÞ. This objective is limited by a volume fraction
equality constraint that specifies final volume VðdÞ as a fraction �
of the initial volume V0. The solution is also constrained to valid
FE solutions KU ¼ F and to acceptable yarn-diameters-squared.
The global structural load vector, global stiffness matrix, and
global deformation matrix are denoted F, K, and U, respectively.
All loads F are applied to the single control node at one end of the
structure—the other end is fixed. Each beam element has a local
stiffness matrix ke;i and deformation vector ue;i. The subscript i
counts yarns from yarn number one to the total number of yarns in
the structure, Ns. The subscript e counts beam elements along
each yarn, from the first-most element to the end-most element in
the yarn, element Ny. The sum of individual element compliances
(uT

e;ike;iue;iÞ is equal to the global compliance (UTKUÞ.
This particular application of sizing optimization to braided

trusses has two variations from the typical approach. First, in the
braided structure, there is no need to penalize yarns with interme-
diate diameter in general, i.e., there is no reason to force yarn
diameters Di to maximum or minimum limits, as all yarn sizes can
be fabricated equally easily. Also, yarns should have a constant Di

along their entire length (li); so, although each yarn is composed
of many beam elements along its length, they are specified to be
of equal diameter. The objective is formulated and grouped to
reveal the yarnwise compliances

cðdÞ � UTKU ¼
XNs

i¼1

XNy

e¼1

uT
e;ike;iue;i (9)

When choosing the design variables, it is desirable for the
objective function to be linear in the design variables to ensure
efficient convergence [19]. Unfortunately ki is not sufficiently lin-
ear in Di ; the AE of the yarn is proportional to D2

i , while bending
and torsional stiffness are proportional to D4

i . To implement OC

method, the design variables are transformed by using the square
of diameter

di � D2
i

This is dimensionally similar to regarding the cross section area as
the design variable, as commonly used in truss optimization work
[20]. If it is assumed that the AE of the yarn is significant com-
pared to its bending and torsional stiffness, then the nonlinear
terms in kiðdiÞ are relatively small which facilitates rapid
convergence.

Each yarn’s relative contribution to structural stiffness is found
using the OC method [20,23] by determining each yarn’s value
contribution toward compliance (@ci=@diÞ and volume (@V=@diÞ.
The response of yarn compliance to a change in qi

@ci

@di
¼
XNy

e¼1

�uT
e;ike;iue;i (10)

The response of yarn volume to a change in qi is determined by
geometry and is simply

@V

@di
¼
XNy

e¼1

ple
4

(11)

If the objective was truly linear in d, we could solve for the new
design variables in a single step using the method of Lagrange
multipliers

dnew
i ¼ diB

g
i

Bi ¼ �

@c

@di

k
@V

@di

(12)

However, to maintain careful treatment of the remaining nonli-
nearity in Eq. (10), the total change in diameter is limited to a step
change in diameter (usually <5% of the initial diameter). Let m
be the maximum step change of di, and g ¼ 1=2 be the numeric
damping coefficient. The update scheme is summarized

qnew
i ¼

if diB
g
i � maxðdmin; di � mÞ :
maxðdmin; di � mÞ

if maxðdmin; di � mÞ < diB
g
i < minð1; di þ mÞ :

diB
g
i

if diB
g
i � minð1; di þ mÞ :
minð1; di þ mÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;
(13)

An additional inherent manufacturing limitation is in the braid-
ing process itself; because braider yarns are in tension during the
braiding process, a uniform structure is not created unless the
clockwise and counterclockwise tensions are nearly equivalent. A
remedy for this is to always match the number of warp and weft
carriers, such that they carry the tension in opposite directions and
thus balance the braid. To consider this effect, the optimization
solver is commanded to group pairs of warp and weft yarns such
that their diameters remain the same [22]. By grouping the aver-
age sensitivity (10) of the two yarns, they are forced to update
equally (12).

While open-architecture lattices themselves will improve the
buckling resistance of thin-walled structures they replace, this
optimization method does not include buckling constraints. The
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lattice structure is subject to several forms of buckling: Euler
buckling of the entire structure, buckling of the individual yarns,
and microscopic buckling of the CFs within the yarns. Typically
this is not a problem since the length-to-diameter ratios at which
carbon yarns buckle is usually long compared to the distance
between interlaced joints in these structures [4]. To address this,
an additional constraint on the optimization could be added, which
limits the free length between bonded joint intersections to remain
below a known critical length-to-diameter ratio. Our results here
focus on the linear, small deflection stiffness of the structures, and
do not consider these or other failure modes.

Results

Example applications of the optimization technique are shown
for some common loading scenarios: axial compression (strut or
column), torsion (driveshaft), cantilever bending (boom), and
three-point bending (bridge). The baseline and final configuration
for the optimization uses the same conditions shown in Table 2.
The target volume fraction � is 27% of the initial volume. Geome-
try and specific stiffness results are tabulated in Table 4.

A primary application of optimal braided lattice may be in the
creation of axially loaded columns and struts in space frames. It
would be expected that the ideal strut would consist of mostly
axial reinforcement; indeed this result was found (Fig. 6(a)). Note
that not all helical yarns were removed: reduction of the target
volume to 25% would eliminate helical yarns entirely, and only
the 16 evenly sized axial yarns would remain. The results with the
fine helical yarns are shown to illustrate the (more practical) inter-
mediate solution. All axial yarns are of equal size. A fine mesh of
helical yarns helps contain them (and, practically, stabilizes the
structure against buckling). By making the helical yarns as small
as possible, not only is their weight decreased but the axial yarns
maintain straighter paths (less undulation) along the structure.

The ideal torsional shaft (Fig. 6(b)) is also mostly intuitive: hel-
ical yarns carry the load along their axis more efficiently than
axial yarns in the interlaced structure. Again, all the final yarns
are of equal diameter. The final helix angle of 44 deg is explained
by the fact that it allows yarns to carry internal loads along their
axes. It is notable that in this loading scenario the solution con-
verges toward a “smooth-walled” structure; in cases where the
stress is uniform through the part, a lattice structure is nonoptimal
unless buckling is considered, where low wall-thickness could
cause a shell buckling instability.

Cantilever bending optimization results yield radical insight
into design (Fig. 6(c)). First, the upper and lower axial yarns are
maintained at full size. While it is doubtful that the idea of area

moment of inertia can be directly applied to a truss structure that
lacks a solid cross section, the increase in diameter and distance
of structural material from the structure centerline certainly
increases the stiffness. The real insight is that some helical yarns
in the optimal braided lattice must be maintained to carry shear
loads and to largely put the upper and lower axials into internal
tensile and compressive loads rather than bending. The cantilever
optimal braided lattice is more efficient with a shallow helix angle
(large pitch), related to the ability to transfer the applied load into
axial stresses in the upper and lower yarns.

Finally, a three-point bending loaded structure is optimized
(Fig. 6(d)). While the large upper and lower axials are maintained,
there is a much higher reliance on the helical yarns to carry shear.
This is simply a feature of the length of the beam used (compared
to the cantilever case).

Discussion

The intent of the framework developed here is to create tools
for optimal braided lattice design. The design process combines

Table 4 Comparison of designed optimal braided lattice predicted properties to equivalent weight-per-length (	1.5 g/cm length)
thin-walled commercial tubes

Specific properties (per mass-per-length) Optimal structure characteristics

Mass
per unit

length (g/cm)

Axial
AEl/m

(kN m/kg)

Torsion
JGl/m

(N m3/kg)

Bending
EIl/m

(N m3/kg)

No. of
axials (mean

diameter mm)

No. of
helicals (mean
diameter mm)

Helix
angle
(deg)

AL 6061 1.489 20.56 183.4 243.0
(analytical)
Roll-wrapped CF 1.018 26.44 409.6 2050
(experimental)
Braided lattice 1.200 10.17 319.9 115.3 8 8 45
(experimental, nonoptimal geometry) (2.3) (2.3)
Braided lattice 1.205 10.19 297.1 115.9 8 8 45
(analysis, nonoptimal geometry) (2.3) (2.3)
Optimal strut 0.996 62.56 16 4 45
(validated analysis) (2.30) (1.05)
Optimal driveshaft 1.000 1362.9 0 32 44
(validated analysis) (N/A) (1.46)
Optimal boom 0.997 4488.7 10 12 51
(validated analysis) (2.00) (1.7)

Fig. 6 Optimal braided lattice geometries: (a) optimal strut, (b)
optimal driveshaft, (c) optimal boom, and (d) optimal bridge
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careful representation of the braid geometry with a lightweight
mechanical model and a fast optimization procedure.

From each step of the design process (geometry, analysis, and
optimization), key design concepts for braided lattice design have
been discovered. The first heuristic of design is that the diameter
should always be increased to the limit of the application’s space
constraints. This increases the distance of yarns from the neutral
axis and (for a given weight) will have less undulation between
the yarns (as the ratio of mandrel diameter to yarn diameter
increases). Helix angle is successfully determined by uncon-
strained parameter minimization. Yarn diameters are, as demon-
strated, efficiently determined using optimality. Yarn locations
also play a role in stiffness: Axial reinforcement is helpful with
any axial stress (whether due to axial or bending loads). The heli-
cal yarns vary in the way they assist the structure; sometimes they
carry loads directly as in torsional loading of the structure, and
other times they transfer load from one set of axial yarns to
another as in cantilever bending. Because truly optimal designs
are often not directly intuitive, the optimization has achieved its
goal of yielding insight into optimal braided lattice design.

The effectiveness of optimal braided lattices compared to sub-
optimal braided lattices is evaluated by comparing the specific
stiffness of optimal and suboptimal geometries, as shown in
Table 4. Suboptimal tubes clearly make poor use of material: 40%
more carbon is used in helical yarns than in axial yarn despite the
fact that it is primarily the axial yarns which contribute most to
stiffness (except in torsional loading). Also, increasing diameter
exponentially improves torsional and bending stiffness as the
moment of inertia grows rapidly when diameter is increased. By
designing optimal tubes using the methods described above, stiff-
ness was increased 4.7 times for axial loading, 4.6 times for tor-
sion, and 39.5 times for bending.

The effectiveness of optimal braided lattice as a designed struc-
ture is likewise evaluated by comparing the specific stiffness of
standard commercially available tubular shapes to optimal braided
lattice in Table 4. Thin-walled tubes become impractical below a
limiting wall thickness due to structural weakness and perhaps
manufacturing limitations, which is clearly seen in the range of
available commercial tubes [4]. All tubes in Table 4 were chosen
to have approximately equal weight per unit length (slightly less
than 1.5 g/cm). This limits the diameter of the commercial tubes
to below 2.5 cm, whereas the optimal braided lattice structures are
all 3.18 cm diameter. This may initially sound like an unfair com-
parison (especially in bending and torsion), but that advantage is a
key feature of the optimal braided lattice, i.e., its ability to
increase diameter without a significant increase in mass. The alu-
minum 6061 tube is the largest diameter commercially available
tube weighing less than 1.5 g/cm; the stiffness for that tube was
computed using known material properties. The smooth-walled
roll-wrapped CF tube is also the largest diameter commercially
available tube that weighs less than 1.5 g/cm; the data for that
tube were measured. The data in Table 4 confirm that optimal
braided lattice designed tubes will dominate traditional thin-
walled aluminum and CF tubes in all loading conditions besides
uniaxial compression. In this linear stiffness comparison, the
material choice determines AE—so the braided lattice has no
advantage over another composite tube (until failure due to buck-
ling is considered). However, for CF and aluminum, it is 3.33 and
7.43 times stiffer in torsion, respectively, and 2.19 and 18.47
times stiffer in bending, respectively.

Conclusion

A design process for the creation of optimal braided lattices
was developed. The simulations from the very start have kept the
constraints of maypole braiding machines in their construction.
The combination of a geometry simulation, FEA tools, and a topo-
logical optimization method completes the required design stages.
Techniques have accurately represented the composite yarns pres-
ent in the structures. The simulation was validated and found to be

an accurate predictor of actual optimal braided lattice tube stiff-
ness. Using a compliance-based optimization method allows rapid
establishment of the most efficient optimal braided lattice geome-
tries. Future research will evaluate the strength properties of opti-
mal braided lattice—particularly related to buckling resistance,
where the unique geometry offers significant advantages where
thin-walled tubes are susceptible to shell buckling and failure
under concentrated (point) radial loading. The design tools devel-
oped herein show the potential gains made with braided truss
composites. The methods are easily accessible to any engineer
and can clearly improve the speed and accuracy with which open-
structure tubes will be designed.
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Nomenclature

cðqÞ ¼ compliance, external energy
e ¼ counts the elements along a yarn from 1 to Ny

i ¼ counts the yarns from 1 to Ns

k ¼ element stiffness matrix
m ¼ optimization iteration step size

Ns ¼ remaining number of yarns in the structure
Ny ¼ number of elements within a yarn

u ¼ element deformation vector
V0 ¼ the initial volume

VðqÞ ¼ the remaining structure volume
d ¼ design variable (an individual yarn’s diameter squared,

D2)
d ¼ vector of design variables (yarn-diameters-squared, D2)
g ¼ numeric damping coefficient
� ¼ a specified target volume fraction
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