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Abstract— Robotic manipulation in unstructured 

environments relies heavily on visual information for context. 

Images from color (RGB) cameras provide rich environmental 

data at low cost. Recently, deep learning has proven to be a 

powerful tool for extracting features from images and using 

these features to estimate the class and location of objects in the 

image. However, data collection with physical robotic arms is 

slow and can be dangerous. The application studied in this work 

is a robotic arm used in a molten-salt nuclear facility to replace 

failed pipe flanges. In this scenario, access to physical hardware 

is only available when the plant is not operating so it is not 

practical to collect real-life data for training. This work trains a 

deep neural network, using only simulated images, to estimate 

the pose of targets in the robot’s coordinate system.  The 

estimated position is accurate to 52.7 mm in a 0.95 cubic meter 

workspace. We describe the simulation, the deep pixel-to-pose 

estimator model and training, environment and domain 

randomizations used for training, and demonstrate the 

performance on a precise robotic tool alignment task.  

I. INTRODUCTION 

     Robots interact with their environment using sensor 

feedback to adapt to changes and uncertainties in the 

environment. Feedback control is a well-studied science when 

the state of the system can be measured or estimated. Cameras 

can provide rich information about an operating environment, 

but to use images for feedback control the pixels must be 

known to encode a set of state variables. Traditionally this 

encoding was done using fiducial markers placed in the 

physical environment [1] or by computer vision methods like 

feature-matching [2]. These methods are useful for highly 

structure scenarios, but they do not generalize easily to new 

scenarios without re-engineering for the new task [3]. The 

objective of this research is to create a model to find the 

position of objects in an image, a ‘pixel-to-pose’ estimator 

network, which requires neither physical fiducial makers nor 

human-designed feature matching. Deep convolutional 

networks have proven to be valuable for classification and 

localization in images. Using deep learning, a pixel-to-pose 

estimator can be designed for robotic manipulation tasks. 

     A pixel-to-pose estimator is useful if it is able to estimate 

the pose of both the robotic arm and a desired target from a 

single RGB image that contains the robot and target. It should 

be robust and provide accurate estimates even when there is 

distracting information in the background of the image. Data 

collection from a real robot arm is costly, so the model should 

be trained only in simulation while still providing accurate 

pose estimates in real images. These goals are achieved by the 
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deep learning model presented in this work.  A simulation 

environment was developed that replicates the experimental 

scenario but with extensive domain randomization (Figure 1). 

This simulation is used to generate training data comprising 

RGB images of the scene and corresponding robot and target 

poses. This data is used to train a deep convolutional neural 

network to estimate key features in the images, then to 

transform those key features into state variables that represent 

the robot and target pose. By choking the data pipeline 

between the convolutional and neural network using spatial 

softmax attention [4], the model achieves 52.7 mm and 0.8 

degrees average accuracy with only 125,034 parameters – an 

order of magnitude below other solutions (c.f. [5] [6]).  

     Our model provides only pixel-to-pose estimation rather 

than directly driving the robot from the model output (c.f. [3] 

[7] [8]). This is done for three reasons. First, many robotic 

manipulation tasks can be performed in feed-forward once a 

sufficiently accurate target pose is achieved: bolt-driving, 

drilling, and many bin-picking tasks fit this criteria. Second, 

by estimating the pose state directly from a single image, no 

temporal information is required in training or inference. This 

allows simple supervised learning training from (image, state) 

sets. Third, it enables a human to interpret the pose estimate 

in the image and therefore to easily determine if the output is 

reasonable, whereas direct drive from the model could lead to 

motions that are potentially unsafe for the machine.  

 

 
Figure 1 – The simulation environment demonstrating a typical 

randomized domain. Inset: Experimental scenario. 
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     This report is arranged as follows: Existing solutions for 

pixel-to-pose estimators, and examples of training such 

models only in simulation, are reviewed. The simulation 

environment that is used to create training data is described 

along with the domain randomization within the simulation 

output images. The pixel-to-pose estimator design is 

explained, especially related to the minimization of network 

parameters and the design of convolutional layers that provide 

strong spatial attention. Model training parameters are 

presented along with a method that was found useful for 

confirming accurate sim-to-real transfer during training. 

Finally, the model is used in a real-life robotic maintenance 

scenario. The accuracy and practical results of that 

experiment are discussed.  

II. RELATED WORK 

     The application of deep convolutional networks for 

extracting image information is not a new concept: they have 

been successfully applied to classification [9] [10], object 

localization [11] [12], and 3D depth estimation [13]. By 

combining a convolutional “feature extractor” with a neural 

network, deep learning can be trained to play video games at 

near human level [14] and to pick and place small objects [3]. 

Many new robotic applications using deep convolutional 

learning are created every year. 

     When building deep convolutional networks for robotics, 

it is important to train models in simulation that can be applied 

in real life: the “sim-to-real transfer” problem [15]. Models 

that work very well for purely simulated scenarios (e.g. [14]) 

will not work in similar real-life scenarios if the model is not 

carefully designed to transfer. Transfer can be achieved by 

precise matching of the simulation to reality, by Generative 

Adversarial Networks (GAN) which transform simulated 

images to have realistic features [16] [17], and by domain 

randomization in the simulation environment [5] [18] [19]. 

Precise matching is usually not practical - the intent of using 

machine learning is to be robust to variations among any 

scenario real or simulated. GAN approaches require 

computing resources that are currently beyond the reach of 

most practicing engineers. Domain randomization, used in 

this work, is easy to integrate in most simulation 

environments and is effective for many types of distractions. 

It essentially forces the feature extractor to ignore variations 

in color, lighting, and texture while maintaining a sense of 

space and dimensions [5]. 

     Machine learning networks for robotics almost always 

comprise a convolutional feature extractor network which 

outputs pixel values that are flattened and directly fed into a 

neural classifier (for object identification) or estimator (for 

regression). This approach is natural, general, and has proven 

to be successful in multiple applications [5] [14] [20]. Yet 

these models requires millions (or tens of millions) of training 

parameters for common images. By adding a spatial attention 

layer (spatial-soft-argmax) between the feature extractor and 

the neural network, these models can be reduced in size by 

tenfold while still providing sufficient information for the 

neural network to estimate relevant robotic pose information 

[4] [7] [21]. The spatial attention layer also provides an 

excellent restriction in the network. It forces it to encode all 

state information in the images as a set of coordinate points in 

that image. Essentially the network is trained to detect a 

constellation of features which are valuable for the pose 

estimator and to track the location of those features. This 

happens in the model optimization process and requires no 

human design input (besides meta-parameters like 

convolutional kernel size). 

     Many applications of deep learning in robotics use 

reinforcement methods for training [22]. This makes sense for 

scenarios where the model will be used to output robot 

actions. However, many robotic tasks can be re-formulated as 

supervised learning from a single image to an action or a state 

[7]. There are several benefits to this. A pixel-to-pose network 

provides position information only, allowing the controls 

designer to combine the position information in a traditional 

state estimator that filters it and potentially fuses it with other 

available measurements [4] [23]. It can also be trained faster 

than reinforcement learning: since training only requires 

loading image batches into the optimizer there is no need to 

record episodes of the model interacting with the environment 

(c.f. [14] [24]). Finally, many robotic tasks involve accurately 

moving from a home position to a target position (soldering, 

bolting, bin-grasping) which can be performed in a single step 

[25] [26]. While it does not naturally account for potential 

collision in the motion path (c.f. [27] [28]), it is equally easy 

to detect obstacles in an image as to detect targets, and design 

a controller to find a safe path that avoids those obstacles [29].  

III. METHODS 

     The experimental scenario for testing this pixel-to-pose 

network imagines a molten-salt nuclear facility after a natural 

disaster: a robotic arm must identify and replace a pipe flange 

which has been moved to a new, unknown location. The 

network must estimate both the robot end effector pose and 

the target flange pose from a single RGB image. When the 

network can accurately identify the pose of the robot arm and 

the flange, it will move directly to the target location then 

loosen the flange using a vendor-supplied soft-insertion 

routine which uses only end-effector forces for feedback.  

This scenario was solved in three stages: First, a simulation 

environment was created with sufficient domain 

randomization to allow sim-to-real transfer.  Second, a deep 

learning pixel-to-pose estimator was created which maps 

input image pixels to the robot and target pose. Finally, this 

network was trained using supervised learning using images 

from the simulation environment. The trained network can 

then be used to detect the robot and target pose given only a 

real life image of the experimental “disaster” scenario.  

A. Simulation Environment 

     A simulation environment was built in Qt (C++) to 

replicate the experimental setup (Figure 2). This simulation is 

controlled using a TCP socket and provides control over the 

virtual robot’s joint angles, the camera position, and the 

position of the target flange. It also provides a domain 

randomization which modifies the color and texture of each 

solid body in the scene as well as the location and intensity of 

the light source (Figure 3). 



  

 
Figure 2- The simulation environment approximately matches the 

colors and arrangement of the experimental scenario. 

 
Figure 3 - Typical examples of simulation images with domain 

randomization applied 

     Qt was chosen as the framework for the simulation 

environment due to its ability to create multi-platform 

packaged applications from a single codebase. Through the 

QtQuick3D module, a 3D environment can be quickly 

generated and embedded within a traditional graphical user 

interface so a user can modify the simulation without the need 

for constant code changes. This environment implements 

custom 3D models with lighting, shadows, textures, and 

material properties. Simulated physics are not implemented, 

but collision checking using oriented bounding boxes allows 

for detection of any failure states where two objects may 

interact. In addition, through the use of the Qt QTcpServer 

object, external programs can be given access to the 

simulation’s features and variables during run-time.  

     Solid Bodies in the scene are generated either from CAD 

models or from 3D shape primitives. The robotic arm was 

generated from models provided by the robot manufacturer, 

while the target objects were drawn based on measurements 

of the physical objects. The floor, walls, and distraction 

objects were generated using 3D shape primitives built into 

the QT3D framework. The robot and target 3D models are 

accurate to within 1mm of their real-world counterparts and 

the overall positions of all objects in the scene are accurate to 

within 1 cm. The initial camera position is accurate to within 

1 cm and 0.5 deg. of the physical camera position. The 

physical camera has been calibrated using OpenCV to 

eliminate distortions caused by the lens. These initial 

accuracies were considered when selecting the range of 

domain randomization; final random ranges were selected to 

ensure that the configuration of the physical environment 

would be guaranteed to fall within the domain, while keeping 

the amount of training samples needed to be generated as low 

as possible. 

     This simulation environment is used to generate 30,000 

training samples for the pixel-to-pose network, randomizing 

the scene and textures in approximately 0.12 seconds per 

image captured.  

 
Table 1 - The simulated images were generated over a uniform 

random range 

Robot Pose Random joint angles 

End-effector within 0.5 m of target 

Target Pose +/- 15cm X, Y 

+/- 5 deg. Z 

Camera View +/- 5 cm X, Y, Z 

+/- 1 deg. X, Y, Z 

+/- 0.25 deg. FoV 

Light Sources +/- 1m X, Y 

+/- 50cm Z 

+/- 30% intensity  

Object Texture 13 textures (checkers, gradients, noise) 

RGB color values from 20% to 100% 

Object 

Material 

Metalness – 0 to 0.3 

Rougness – 0 to 10.0 

Specularity – 0 to 1.0 

B.  Pixel-to-Pose Estimator  

     The pixel-to-pose estimator network is designed to meet 

the goals of this scenario by finding a representation of object 

pose, encoded within a camera image, in a model that can be 

trained on a common engineering workstation. Practically this 

restricts the network to 1M parameters, but it was found that 

a model of only 125,034 parameters provides sufficient 

accuracy and prevents overfitting. The input to the pixel-to-

pose neural network are (a) a single RGB image 𝐼 ∈
 𝑅180𝑥240𝑥3 and (b) the current robot pose 𝑝 ∈ 𝑅6. The 

network outputs are (c) the target object pose 𝑥 ∈ 𝑅6 and (d) 

the estimated robot pose �̂� ∈ 𝑅6. The robot pose output is 

estimated using only the input image, and is only present as 

an auxiliary task for faster training ([7] [30]). The network is, 

conceptually, divided into a vision network comprising 

convolutional layers, and a pose estimator comprising an 

arrangement of fully connected layers (Figure 4). 

1) Input Image Shape 

     The input image size was chosen to provide a balance 

between network size (number of parameters), spatial 

resolution of objects in the scene, and the region-of-influence 

which contributes to each of the key-point outputs. Inputs 

ranging in size from (60x90) to (320x480) were tested: 

(180x240) was found to provide accurate spatial resolution 

while requiring mild computing resource for training.  



  

2) Intermediate Convolutional Layers 

     The convolutional layer choices closely follow Zheng et al 

[7]. The intermediate convolutional layers are common, small 

convolutions. These layers are initialized randomly with the 

exception of the first (7x7 kernel) layer which is initialized 

with the weights of resnet101 [10]. All convolution layers use 

Rectified Linear Unit (ReLU) activation except the last layer. 

3) Final Convolutional Layer 

      The last layer requires special design consideration to 

achieve accurate tracking. Spatial key-points should provide 

concentrated activation at small regions of the image, such as 

corners of the target object or the robot end-effector’s tool. 

Spatial key-points will only be useful if they are unique in the 

image: due to the nature of the spatial-softmax activation, 

repeated patterns in the image will be averaged to their 

(weighted) centroid. To ensure the network will meet these 

criteria, the final convolutional layer in the network is given 

L2 regularization so that the total activation of each 

convolutional channel is small and ‘focused’ on individual, 

small regions. An L2 penalty 𝜆𝑐 = 1𝑒−5 provides good focus 

without leading to local minima during convergence. 

4) Spatial Softmax 

     The vision network output spatial softmax activation is 

intended to find a minimal set of key-points (𝑘 ∈ 𝑅32𝑥2), the 

“constellation”, that represent the pose of the robot and the 

target. Conceptually, a 3D object in an image should be able 

to be encoded knowing the pixel location of only three 

features – so tracking the robot pose and the target pose 

should require only six key-points. However, the model will 

be more robust if it is trained to determine multiple 

representations of the scene. It was determined that 32 key-

points provides successful tracking for the two outputs in this 

work. The spatial-softmax temperature was fixed at 0.001 to 

ensure tracking of concentrated features.  

5) Robot Pose Auxiliary Task 

     The pose network uses image key-points and a small fully-

connected network to estimate the 6 DoF robot end-effector 

pose as an auxiliary task. While it is not used when the 

network is on-policy in real life, the model is trained to predict 

the robot pose as an auxiliary task using only the vision 

network output. This approach has been shown to provide 

faster model convergence. In this work it was originally added 

for that purpose, but was found to also provide a valuable 

error estimate by comparing the predicted pose to the true 

pose while on-policy with real images. These two will diverge 

when the scene is occluded and cannot be used for 

predictions. For instance, it will report a large deviation when 

a person walks between the robot and the camera such that the 

target is not in the scene. 

6) Target Pose Prediction Network 

     The desired target output is predicted by a small fully-

connected network. The input is created by concatenating the 

spatial key-points 𝑘, the known robot pose 𝑝, and the 

predicted robot pose �̂�. The output 𝑥 is linear since this is 

essentially a regression problem to predict the target pose. In 

this work the target pose has three degrees of freedom since 

the target flange is mounted on the floor, but it is clear that the 

technique can easily be extended to more targets by increasing 

the number of spatial key-points and the number of outputs. 

C. Model Training 

     The pixel-to-pose model was implemented using Keras in 

Python. Training is performed using a data generator to take 

(image, robot pose, target pose) tuples from a data-frame 

linked to a local directory of 30,000 randomized simulation 

images.  The data is split so that 20% is held as test data, then 

all data is normalized to the training set. Images are 

normalized using the resnet101 input format. 

     Since pose estimation is essentially a regression problem, 

L2 loss provides an objective function that directly 

corresponds to prediction accuracy. The complete objective 

function  

ℒ(𝜃) = 𝜆𝑥ℒ𝑙2 + 𝜆𝑝ℒ𝑙2 + 𝜆𝑐ℒ𝑙2 

provides a loss for the output pose 𝑥, the auxiliary robot pose 

�̂�, and the regularization in the last convolutional layer. A 

meta-parameter search found good results with the weights 

shown in Table 2. 

 
Table 2 – Optimization weights 

𝜆𝑥 0.7 

𝜆𝑝 0.3 

𝜆𝑐 0.0001 

 

Figure 4 - The pixel-to-pose estimator combines a vision network and a pose network to estimate the target pose.  



  

     Optimization was performed using ADAM. A learning 

rate of 0.0001, lower than the typical starting value, was 

required to prevent convergence to local minima (convolution 

kernels with all zeros), consistent with previous research 

results [5]. A set of 200 real images were used to create a 

small test dataset for comparison. While this would not be 

available in a final application, it was available for this 

experiment to help guide model design and meta-parameter 

selection. This dataset of real images was input to the model 

after each epoch, providing a numeric measure of the sim to 

real transfer. Convergence for the target pose prediction 𝑥 is 

shown in Figure 5. In fewer than 100 epochs the network 

converges. The accuracy for real images is consistently higher 

than the accuracy for simulation, showing perhaps that the 

extent of domain randomization in the simulation is more than 

what is needed for good sim-to-real transfer.  

 
Figure 5 – Although trained only with simulated data (left), at each 

epoch the network makes predictions on real images (right). 

IV. EXPERIMENT 

     To validate the performance of the pixel-to-pose estimator, 

a scenario was developed to demonstrate a typical robotic arm 

tool alignment scenario. In this scenario, a molten-salt nuclear 

reactor is designed with a robotic arm near the working-fluid 

piping, to assist in case of a system failure. Specifically, in a 

natural disaster or critical failure of the plant, pipes that 

contain molten-salt mixture or heat-transfer fluid could be 

displaced from their mounts and need to be replaced. Each 

step in the repair requires the precise targeting of an object 

with the robot end-effector. The targeted object in this 

experiment is a Grayloc flange which needs to be loosened, 

lifted, and replaced. If the model can reliably identify the pose 

of the displaced flange, the robot can move to the flange’s 

locking bolt and remove it (Figure 6). 

 

 
Figure 6 - Operating process for the robotic maintenance task 

     The network designed in this work is well-suited for these 

scenarios. It allows any object to become a target without 

requiring fiducial markings and can be trained quickly, after 

a target is identified. It provides accurate pose estimation even 

when the camera, target, and surroundings are displaced. It 

also provides a human-readable constellation of detected key-

points to verify a move before it is performed. Finally, it 

determines the location from a single image, allowing the 

control interface to regulate the motion of the robotic arm 

towards the target (Figure 7). 

 

 
Figure 7 - A "master program” provides the user interface to 

observe correspondence between the model and reality. 

V. RESULTS  

     Success in the experimental scenario is when the robot arm 

starts in a random location (in frame), the model determines a 

flange position, and when the robot moves to that position it 

is able to unbolt the Grayloc flange. Numerically, that 

requires the ability to find a target within 30 mm and 1.0 

degrees, in a workspace of approximately 0.95 cubic meters. 

This accuracy is achieved in 240 of 400 tests. 

     It is perhaps more informative to determine if the solution 

is stable. As a problem statement: does it provide strong 

convergence toward the target from any starting position, or 

will certain starting points cause it to fail? To confirm reliable 

estimation, the robot arm was moved in a 2D grid near the 

target with an image and true pose captured at grid points.  

The network makes a prediction for each of these points with 

33.5 mm and 0.3 degree average accuracy. The convergence 

is demonstrated in Figure 8. This data shows a single minima 

with a biased minimal solution. This bias appears to be due to 

limits of the single RGB image: the network’s ability to 

estimate depth is weaker than its estimate of direction.  

 

     
Figure 8 - The network consistently provides a useful estimate 

regardless of robot arm starting location. 



  

VI. CONCLUSION 

     This work describes a model which can reliably predict the 

pose of objects in a scene relative to a robotic arm. The pixel-

to-pose network can be trained using only simulated data then 

transferred to a real scenario. By encoding the image as a 

constellation of key-points, the network provides visual 

validation that it is working correctly.  

     In future work, this network will be extended to predict the 

pose of multiple objects in a single scene – this is useful for 

detection of obstacles in addition to targets. It will also be re-

evaluated using stereo cameras to determine if that improves 

the 3D position estimate. The auxiliary robot pose prediction 

accuracy was seen to provide a measure of model certainty at 

run-time – this concept will be explored rigorously in a future 

experiment. Finally, there are many opportunities to find 

further efficiency in the model, for instance by optimizing the 

ratio of key-point to targets, evaluating the input image size, 

and considering how stereo images, depth images, and 

grayscale inputs affect the model accuracy. 
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