

Abstract— Robotic manipulation in unstructured

environments relies heavily on visual information for context.

Images from color (RGB) cameras provide rich environmental

data at low cost. Recently, deep learning has proven to be a

powerful tool for extracting features from images and using

these features to estimate the class and location of objects in the

image. However, data collection with physical robotic arms is

slow and can be dangerous. The application studied in this work

is a robotic arm used in a molten-salt nuclear facility to replace

failed pipe flanges. In this scenario, access to physical hardware

is only available when the plant is not operating so it is not

practical to collect real-life data for training. This work trains a

deep neural network, using only simulated images, to estimate

the pose of targets in the robot’s coordinate system. The

estimated position is accurate to 52.7 mm in a 0.95 cubic meter

workspace. We describe the simulation, the deep pixel-to-pose

estimator model and training, environment and domain

randomizations used for training, and demonstrate the

performance on a precise robotic tool alignment task.

I. INTRODUCTION

 Robots interact with their environment using sensor

feedback to adapt to changes and uncertainties in the

environment. Feedback control is a well-studied science when

the state of the system can be measured or estimated. Cameras

can provide rich information about an operating environment,

but to use images for feedback control the pixels must be

known to encode a set of state variables. Traditionally this

encoding was done using fiducial markers placed in the

physical environment [1] or by computer vision methods like

feature-matching [2]. These methods are useful for highly

structure scenarios, but they do not generalize easily to new

scenarios without re-engineering for the new task [3]. The

objective of this research is to create a model to find the

position of objects in an image, a ‘pixel-to-pose’ estimator

network, which requires neither physical fiducial makers nor

human-designed feature matching. Deep convolutional

networks have proven to be valuable for classification and

localization in images. Using deep learning, a pixel-to-pose

estimator can be designed for robotic manipulation tasks.

 A pixel-to-pose estimator is useful if it is able to estimate

the pose of both the robotic arm and a desired target from a

single RGB image that contains the robot and target. It should

be robust and provide accurate estimates even when there is

distracting information in the background of the image. Data

collection from a real robot arm is costly, so the model should

be trained only in simulation while still providing accurate

pose estimates in real images. These goals are achieved by the

*Supported by the U.S. Dept. of Energy (DE-FOA-0001953-LISE)

Austin Gurley and Kyle Kubik are with Gentle Machine Company,

Birmingham, AL 35233 USA (email: austin@gentlemachineco.com)

deep learning model presented in this work. A simulation

environment was developed that replicates the experimental

scenario but with extensive domain randomization (Figure 1).

This simulation is used to generate training data comprising

RGB images of the scene and corresponding robot and target

poses. This data is used to train a deep convolutional neural

network to estimate key features in the images, then to

transform those key features into state variables that represent

the robot and target pose. By choking the data pipeline

between the convolutional and neural network using spatial

softmax attention [4], the model achieves 52.7 mm and 0.8

degrees average accuracy with only 125,034 parameters – an

order of magnitude below other solutions (c.f. [5] [6]).

 Our model provides only pixel-to-pose estimation rather

than directly driving the robot from the model output (c.f. [3]

[7] [8]). This is done for three reasons. First, many robotic

manipulation tasks can be performed in feed-forward once a

sufficiently accurate target pose is achieved: bolt-driving,

drilling, and many bin-picking tasks fit this criteria. Second,

by estimating the pose state directly from a single image, no

temporal information is required in training or inference. This

allows simple supervised learning training from (image, state)

sets. Third, it enables a human to interpret the pose estimate

in the image and therefore to easily determine if the output is

reasonable, whereas direct drive from the model could lead to

motions that are potentially unsafe for the machine.

Figure 1 – The simulation environment demonstrating a typical

randomized domain. Inset: Experimental scenario.

Joel Bjornstad, Seth Cohen, and Mark Patterson are with Southern

Research Institute

Robert Amaro is with Advanced Materials Testing and Technology

Pixel-to-Pose Estimator for Precise Robotic Tool Alignment

Austin Gurley, Member, IEEE, Kyle Kubik,

Joel Bjornstad, Seth Cohen, Robert Amaro, and Mark Patterson

 This report is arranged as follows: Existing solutions for

pixel-to-pose estimators, and examples of training such

models only in simulation, are reviewed. The simulation

environment that is used to create training data is described

along with the domain randomization within the simulation

output images. The pixel-to-pose estimator design is

explained, especially related to the minimization of network

parameters and the design of convolutional layers that provide

strong spatial attention. Model training parameters are

presented along with a method that was found useful for

confirming accurate sim-to-real transfer during training.

Finally, the model is used in a real-life robotic maintenance

scenario. The accuracy and practical results of that

experiment are discussed.

II. RELATED WORK

 The application of deep convolutional networks for

extracting image information is not a new concept: they have

been successfully applied to classification [9] [10], object

localization [11] [12], and 3D depth estimation [13]. By

combining a convolutional “feature extractor” with a neural

network, deep learning can be trained to play video games at

near human level [14] and to pick and place small objects [3].

Many new robotic applications using deep convolutional

learning are created every year.

 When building deep convolutional networks for robotics,

it is important to train models in simulation that can be applied

in real life: the “sim-to-real transfer” problem [15]. Models

that work very well for purely simulated scenarios (e.g. [14])

will not work in similar real-life scenarios if the model is not

carefully designed to transfer. Transfer can be achieved by

precise matching of the simulation to reality, by Generative

Adversarial Networks (GAN) which transform simulated

images to have realistic features [16] [17], and by domain

randomization in the simulation environment [5] [18] [19].

Precise matching is usually not practical - the intent of using

machine learning is to be robust to variations among any

scenario real or simulated. GAN approaches require

computing resources that are currently beyond the reach of

most practicing engineers. Domain randomization, used in

this work, is easy to integrate in most simulation

environments and is effective for many types of distractions.

It essentially forces the feature extractor to ignore variations

in color, lighting, and texture while maintaining a sense of

space and dimensions [5].

 Machine learning networks for robotics almost always

comprise a convolutional feature extractor network which

outputs pixel values that are flattened and directly fed into a

neural classifier (for object identification) or estimator (for

regression). This approach is natural, general, and has proven

to be successful in multiple applications [5] [14] [20]. Yet

these models requires millions (or tens of millions) of training

parameters for common images. By adding a spatial attention

layer (spatial-soft-argmax) between the feature extractor and

the neural network, these models can be reduced in size by

tenfold while still providing sufficient information for the

neural network to estimate relevant robotic pose information

[4] [7] [21]. The spatial attention layer also provides an

excellent restriction in the network. It forces it to encode all

state information in the images as a set of coordinate points in

that image. Essentially the network is trained to detect a

constellation of features which are valuable for the pose

estimator and to track the location of those features. This

happens in the model optimization process and requires no

human design input (besides meta-parameters like

convolutional kernel size).

 Many applications of deep learning in robotics use

reinforcement methods for training [22]. This makes sense for

scenarios where the model will be used to output robot

actions. However, many robotic tasks can be re-formulated as

supervised learning from a single image to an action or a state

[7]. There are several benefits to this. A pixel-to-pose network

provides position information only, allowing the controls

designer to combine the position information in a traditional

state estimator that filters it and potentially fuses it with other

available measurements [4] [23]. It can also be trained faster

than reinforcement learning: since training only requires

loading image batches into the optimizer there is no need to

record episodes of the model interacting with the environment

(c.f. [14] [24]). Finally, many robotic tasks involve accurately

moving from a home position to a target position (soldering,

bolting, bin-grasping) which can be performed in a single step

[25] [26]. While it does not naturally account for potential

collision in the motion path (c.f. [27] [28]), it is equally easy

to detect obstacles in an image as to detect targets, and design

a controller to find a safe path that avoids those obstacles [29].

III. METHODS

 The experimental scenario for testing this pixel-to-pose

network imagines a molten-salt nuclear facility after a natural

disaster: a robotic arm must identify and replace a pipe flange

which has been moved to a new, unknown location. The

network must estimate both the robot end effector pose and

the target flange pose from a single RGB image. When the

network can accurately identify the pose of the robot arm and

the flange, it will move directly to the target location then

loosen the flange using a vendor-supplied soft-insertion

routine which uses only end-effector forces for feedback.

This scenario was solved in three stages: First, a simulation

environment was created with sufficient domain

randomization to allow sim-to-real transfer. Second, a deep

learning pixel-to-pose estimator was created which maps

input image pixels to the robot and target pose. Finally, this

network was trained using supervised learning using images

from the simulation environment. The trained network can

then be used to detect the robot and target pose given only a

real life image of the experimental “disaster” scenario.

A. Simulation Environment

 A simulation environment was built in Qt (C++) to

replicate the experimental setup (Figure 2). This simulation is

controlled using a TCP socket and provides control over the

virtual robot’s joint angles, the camera position, and the

position of the target flange. It also provides a domain

randomization which modifies the color and texture of each

solid body in the scene as well as the location and intensity of

the light source (Figure 3).

Figure 2- The simulation environment approximately matches the

colors and arrangement of the experimental scenario.

Figure 3 - Typical examples of simulation images with domain

randomization applied

 Qt was chosen as the framework for the simulation

environment due to its ability to create multi-platform

packaged applications from a single codebase. Through the

QtQuick3D module, a 3D environment can be quickly

generated and embedded within a traditional graphical user

interface so a user can modify the simulation without the need

for constant code changes. This environment implements

custom 3D models with lighting, shadows, textures, and

material properties. Simulated physics are not implemented,

but collision checking using oriented bounding boxes allows

for detection of any failure states where two objects may

interact. In addition, through the use of the Qt QTcpServer

object, external programs can be given access to the

simulation’s features and variables during run-time.

 Solid Bodies in the scene are generated either from CAD

models or from 3D shape primitives. The robotic arm was

generated from models provided by the robot manufacturer,

while the target objects were drawn based on measurements

of the physical objects. The floor, walls, and distraction

objects were generated using 3D shape primitives built into

the QT3D framework. The robot and target 3D models are

accurate to within 1mm of their real-world counterparts and

the overall positions of all objects in the scene are accurate to

within 1 cm. The initial camera position is accurate to within

1 cm and 0.5 deg. of the physical camera position. The

physical camera has been calibrated using OpenCV to

eliminate distortions caused by the lens. These initial

accuracies were considered when selecting the range of

domain randomization; final random ranges were selected to

ensure that the configuration of the physical environment

would be guaranteed to fall within the domain, while keeping

the amount of training samples needed to be generated as low

as possible.

 This simulation environment is used to generate 30,000

training samples for the pixel-to-pose network, randomizing

the scene and textures in approximately 0.12 seconds per

image captured.

Table 1 - The simulated images were generated over a uniform

random range

Robot Pose Random joint angles

End-effector within 0.5 m of target

Target Pose +/- 15cm X, Y

+/- 5 deg. Z

Camera View +/- 5 cm X, Y, Z

+/- 1 deg. X, Y, Z

+/- 0.25 deg. FoV

Light Sources +/- 1m X, Y

+/- 50cm Z

+/- 30% intensity

Object Texture 13 textures (checkers, gradients, noise)

RGB color values from 20% to 100%

Object

Material

Metalness – 0 to 0.3

Rougness – 0 to 10.0

Specularity – 0 to 1.0

B. Pixel-to-Pose Estimator

 The pixel-to-pose estimator network is designed to meet

the goals of this scenario by finding a representation of object

pose, encoded within a camera image, in a model that can be

trained on a common engineering workstation. Practically this

restricts the network to 1M parameters, but it was found that

a model of only 125,034 parameters provides sufficient

accuracy and prevents overfitting. The input to the pixel-to-

pose neural network are (a) a single RGB image 𝐼 ∈
 𝑅180𝑥240𝑥3 and (b) the current robot pose 𝑝 ∈ 𝑅6. The

network outputs are (c) the target object pose 𝑥 ∈ 𝑅6 and (d)

the estimated robot pose �̂� ∈ 𝑅6. The robot pose output is

estimated using only the input image, and is only present as

an auxiliary task for faster training ([7] [30]). The network is,

conceptually, divided into a vision network comprising

convolutional layers, and a pose estimator comprising an

arrangement of fully connected layers (Figure 4).

1) Input Image Shape

 The input image size was chosen to provide a balance

between network size (number of parameters), spatial

resolution of objects in the scene, and the region-of-influence

which contributes to each of the key-point outputs. Inputs

ranging in size from (60x90) to (320x480) were tested:

(180x240) was found to provide accurate spatial resolution

while requiring mild computing resource for training.

2) Intermediate Convolutional Layers

 The convolutional layer choices closely follow Zheng et al

[7]. The intermediate convolutional layers are common, small

convolutions. These layers are initialized randomly with the

exception of the first (7x7 kernel) layer which is initialized

with the weights of resnet101 [10]. All convolution layers use

Rectified Linear Unit (ReLU) activation except the last layer.

3) Final Convolutional Layer

 The last layer requires special design consideration to

achieve accurate tracking. Spatial key-points should provide

concentrated activation at small regions of the image, such as

corners of the target object or the robot end-effector’s tool.

Spatial key-points will only be useful if they are unique in the

image: due to the nature of the spatial-softmax activation,

repeated patterns in the image will be averaged to their

(weighted) centroid. To ensure the network will meet these

criteria, the final convolutional layer in the network is given

L2 regularization so that the total activation of each

convolutional channel is small and ‘focused’ on individual,

small regions. An L2 penalty 𝜆𝑐 = 1𝑒−5 provides good focus

without leading to local minima during convergence.

4) Spatial Softmax

 The vision network output spatial softmax activation is

intended to find a minimal set of key-points (𝑘 ∈ 𝑅32𝑥2), the

“constellation”, that represent the pose of the robot and the

target. Conceptually, a 3D object in an image should be able

to be encoded knowing the pixel location of only three

features – so tracking the robot pose and the target pose

should require only six key-points. However, the model will

be more robust if it is trained to determine multiple

representations of the scene. It was determined that 32 key-

points provides successful tracking for the two outputs in this

work. The spatial-softmax temperature was fixed at 0.001 to

ensure tracking of concentrated features.

5) Robot Pose Auxiliary Task

 The pose network uses image key-points and a small fully-

connected network to estimate the 6 DoF robot end-effector

pose as an auxiliary task. While it is not used when the

network is on-policy in real life, the model is trained to predict

the robot pose as an auxiliary task using only the vision

network output. This approach has been shown to provide

faster model convergence. In this work it was originally added

for that purpose, but was found to also provide a valuable

error estimate by comparing the predicted pose to the true

pose while on-policy with real images. These two will diverge

when the scene is occluded and cannot be used for

predictions. For instance, it will report a large deviation when

a person walks between the robot and the camera such that the

target is not in the scene.

6) Target Pose Prediction Network

 The desired target output is predicted by a small fully-

connected network. The input is created by concatenating the

spatial key-points 𝑘, the known robot pose 𝑝, and the

predicted robot pose �̂�. The output 𝑥 is linear since this is

essentially a regression problem to predict the target pose. In

this work the target pose has three degrees of freedom since

the target flange is mounted on the floor, but it is clear that the

technique can easily be extended to more targets by increasing

the number of spatial key-points and the number of outputs.

C. Model Training

 The pixel-to-pose model was implemented using Keras in

Python. Training is performed using a data generator to take

(image, robot pose, target pose) tuples from a data-frame

linked to a local directory of 30,000 randomized simulation

images. The data is split so that 20% is held as test data, then

all data is normalized to the training set. Images are

normalized using the resnet101 input format.

 Since pose estimation is essentially a regression problem,

L2 loss provides an objective function that directly

corresponds to prediction accuracy. The complete objective

function

ℒ(𝜃) = 𝜆𝑥ℒ𝑙2 + 𝜆𝑝ℒ𝑙2 + 𝜆𝑐ℒ𝑙2

provides a loss for the output pose 𝑥, the auxiliary robot pose

�̂�, and the regularization in the last convolutional layer. A

meta-parameter search found good results with the weights

shown in Table 2.

Table 2 – Optimization weights

𝜆𝑥 0.7

𝜆𝑝 0.3

𝜆𝑐 0.0001

Figure 4 - The pixel-to-pose estimator combines a vision network and a pose network to estimate the target pose.

 Optimization was performed using ADAM. A learning

rate of 0.0001, lower than the typical starting value, was

required to prevent convergence to local minima (convolution

kernels with all zeros), consistent with previous research

results [5]. A set of 200 real images were used to create a

small test dataset for comparison. While this would not be

available in a final application, it was available for this

experiment to help guide model design and meta-parameter

selection. This dataset of real images was input to the model

after each epoch, providing a numeric measure of the sim to

real transfer. Convergence for the target pose prediction 𝑥 is

shown in Figure 5. In fewer than 100 epochs the network

converges. The accuracy for real images is consistently higher

than the accuracy for simulation, showing perhaps that the

extent of domain randomization in the simulation is more than

what is needed for good sim-to-real transfer.

Figure 5 – Although trained only with simulated data (left), at each

epoch the network makes predictions on real images (right).

IV. EXPERIMENT

 To validate the performance of the pixel-to-pose estimator,

a scenario was developed to demonstrate a typical robotic arm

tool alignment scenario. In this scenario, a molten-salt nuclear

reactor is designed with a robotic arm near the working-fluid

piping, to assist in case of a system failure. Specifically, in a

natural disaster or critical failure of the plant, pipes that

contain molten-salt mixture or heat-transfer fluid could be

displaced from their mounts and need to be replaced. Each

step in the repair requires the precise targeting of an object

with the robot end-effector. The targeted object in this

experiment is a Grayloc flange which needs to be loosened,

lifted, and replaced. If the model can reliably identify the pose

of the displaced flange, the robot can move to the flange’s

locking bolt and remove it (Figure 6).

Figure 6 - Operating process for the robotic maintenance task

 The network designed in this work is well-suited for these

scenarios. It allows any object to become a target without

requiring fiducial markings and can be trained quickly, after

a target is identified. It provides accurate pose estimation even

when the camera, target, and surroundings are displaced. It

also provides a human-readable constellation of detected key-

points to verify a move before it is performed. Finally, it

determines the location from a single image, allowing the

control interface to regulate the motion of the robotic arm

towards the target (Figure 7).

Figure 7 - A "master program” provides the user interface to

observe correspondence between the model and reality.

V. RESULTS

 Success in the experimental scenario is when the robot arm

starts in a random location (in frame), the model determines a

flange position, and when the robot moves to that position it

is able to unbolt the Grayloc flange. Numerically, that

requires the ability to find a target within 30 mm and 1.0

degrees, in a workspace of approximately 0.95 cubic meters.

This accuracy is achieved in 240 of 400 tests.

 It is perhaps more informative to determine if the solution

is stable. As a problem statement: does it provide strong

convergence toward the target from any starting position, or

will certain starting points cause it to fail? To confirm reliable

estimation, the robot arm was moved in a 2D grid near the

target with an image and true pose captured at grid points.

The network makes a prediction for each of these points with

33.5 mm and 0.3 degree average accuracy. The convergence

is demonstrated in Figure 8. This data shows a single minima

with a biased minimal solution. This bias appears to be due to

limits of the single RGB image: the network’s ability to

estimate depth is weaker than its estimate of direction.

Figure 8 - The network consistently provides a useful estimate

regardless of robot arm starting location.

VI. CONCLUSION

 This work describes a model which can reliably predict the

pose of objects in a scene relative to a robotic arm. The pixel-

to-pose network can be trained using only simulated data then

transferred to a real scenario. By encoding the image as a

constellation of key-points, the network provides visual

validation that it is working correctly.

 In future work, this network will be extended to predict the

pose of multiple objects in a single scene – this is useful for

detection of obstacles in addition to targets. It will also be re-

evaluated using stereo cameras to determine if that improves

the 3D position estimate. The auxiliary robot pose prediction

accuracy was seen to provide a measure of model certainty at

run-time – this concept will be explored rigorously in a future

experiment. Finally, there are many opportunities to find

further efficiency in the model, for instance by optimizing the

ratio of key-point to targets, evaluating the input image size,

and considering how stereo images, depth images, and

grayscale inputs affect the model accuracy.

REFERENCES

[1] M. Košt’ák and A. Slabý, "Desiging a Simple Fiducial

Marker for Localization in Spatial Scenes Using Neural

Networks," MDPI Sensors, vol. 21, no. 5407, pp. 1-31, 2021.

[2] H. Bay, T. Tuytelaars and L. Van Gool, "SURF: Speeded Up

Robust Features," in European Conference on Computer

Vision (ECCV), Graz, 2006.

[3] S. Levine, C. Finn and et al, "End-to-End Training of Deep

Visuomotor Policies," The Journal of Machine Learning

Research, vol. 17, pp. 1-40, 2016.

[4] C. Finn and et al, "Deep spatial autoencoders for visuomotor

learning," in IEEE International Conference on Robotics and

Automation (ICRA), Stockholm, 2016.

[5] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba and P.

Abbeel, "Domain Randomization for Transferring Deep

Neural Networks from Simulation to the Real World,"

arXiv:1703.06907, 2017.

[6] V. Mnih and et al, "Playing Atari with Deep Reinforcement

Learning," arXiv:1312.5602, NIPS Deep Learning Workshop

2013, 2013.

[7] T. Zhang and et al, "Deep Imitation Learning for Complex

Manipulation Tasks from Virtual Reality Teleoperation," in

IEEE International Conference on Robotics and Automation

(ICRA), Brisbane, 2018.

[8] A. Rajeswaran, S. Levine and et al, "Learning Complex

Deterous Manipulation with Deep Reinforcement Learning

and Demonstrations," arXiv:1709.10087, 2018.

[9] C. Szegedy and et al, "Going deeper with convolutions,"

arXiv:1409.4842.

[10] K. He, X. Zhang, R. Shaoqing and J. Sun, "Deep Residual

Learning for Image Recognition," arXiv:1512.03385, 2015.

[11] D. Mascharka and et al, "Transparency by Design: Closing

the Gap Between Performance and Interpretability in Visual

Reasoning," arXiv:1803.05268, 2018.

[12] E. Ribeiro, R. Mendes and V. Grassi Jr, "Real-Time Deep

Learning Approach to Visual Servo Contorl and Grasp

Detection for Autonomous Robotic Manipulation,"

arXiv:2010.06544, 2021.

[13] A. Kendall and et al, "End-to-End Learning of Geometry and

Context for Deep Stereo Regression," arXiv:1703.04309,

2017.

[14] V. Mnih, K. Kavukcuogiu, D. Silver and et al, "Human-level

control through deep reinforcement learning," Nature

Research Letters, vol. 518, pp. 529-533, 2015.

[15] W. Zhao, J. Queralta and T. Westerlund, "Sim-to-Real

Transfer in Deep Reinforcement Learning for Robotics: a

Survey," in IEEE Symposium Series on Computational

Intelligence (SSCI), Canberra, 2020.

[16] K. Bousmalis, S. Levine and et al, "Using Simulation and

Domain Adaption to Improve Efficiency of Deep Robotic

Grasping," arXiv:1709.07857, 2017.

[17] K. Rao, S. Levine and et al, "RL-CycleGAN: Reinforcement

Learning Aware Simulation-To-Real," arXiv:2006.09001,

2020.

[18] M. Andrychowicz and et al, "Learning Dexterous In-Hand

Manipulation," arXiv:1808.00177, 2019.

[19] J. Tobin, P. Abbeel and et al, "Domain Randomization and

Generative Models for Robotics Grasping," arXiv:1710-

06425, 2018.

[20] R. Rahmatizadeh, S. Levine and et al, "Vision-Based Multi-

Task Manipulation for Inexpensive Robots Using End-To-

End Learning from Demonstrations," arXiv:1707.02920,

2018.

[21] J. Chang and et al, "Learning Deep Parameterized Skills

from Demonstration for Retargetable Visuomotor Control,"

arXiv:1910.10628, 2019.

[22] D. Kalashnikov, S. Levine and et al, "QT-Opt: Scalable Deep

Reinforcement Learning for Vision-Based Robotic

Manipulation," arXiv:1806.10293, 2018.

[23] D. Simon, Optimal State Estimation, Germany: Wiley, 2006.

[24] T. Haarnoja, A. Zhou, P. Abbeel and S. Levine, "Soft Actor-

Critic: Off-Policy Maximum Entropy Deep Reinforcement

Learning with a Stochastic Actor," in Proc. 35th Int. Conf. on

Machine Learning, Stockholm, 2018.

[25] G. Schoettler, L. Sergey and et al, "Deep Reinforcement

Learning for Industrial Insertion Tasks with Visual Inputs

and Natural Rewards," arXiv:1906.05841, 2019.

[26] E. Johns, "Coarse-to-Fine Imitation Learning: Robot

Manipulation from a Single Demonstration,"

arXiv:2105.06411, 2021.

[27] M. Bajrachararya and et al, "A Mobile Manipulation System

for One-Shot Teaching of Complex Tasks in Homes,"

arXiv:1910.00127, 2019.

[28] G. Kahn, P. Abbeel and S. Levine, "BADGR - An

Autonomous Self-Supervised Learning-Based Navigation

System," arXiv:2002.05700, 2020.

[29] A. Stentz, "Optimal and Efficient Path Planning for Partially-

Known Environments," in IEEE Int. Conf. on Robotics and

Automation (ICRA), 1994.

[30] M. Jaderberg and et al, "Reinforcement Learning with

Unsupervised Auxiliary Tasks," arXiv:1611.05397, 2016.

