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ABSTRACT 
 

Shape Memory Alloys (SMAs) actuators operate via a 

nonlinear and hysteretic relationship between input power and 

mechanical motion. This nonlinearity presents a serious 

challenge when developing methods for controlling these 

actuators. Because this hysteresis and nonlinearity is caused by 

the crystal phase transformation however, the SMA constitutive 

and kinetic models can be written in Linear Parameter Varying 

(LPV) form, with the partial derivative of crystal phase fraction 

with respect to temperature as the varying parameter. This allows 

a SMA system to be written in a state-space format where the 

coefficients in the state matrices vary as a function of the state 

variables, allowing for the application of powerful linear system 

analysis tools to this model without simplifying assumptions. 

This LPV model can then be used to create an estimator for the 

system, allowing for real-time approximations of the system 

states, including temperature and phase fraction. This paper 

presents the derivation of one such LPV model and explores its 

ability to accurately represent a physical SMA actuator system 

by comparison with an instrumented SMA muscle system.   

 
INTRODUCTION 

 

SMA actuators boast many benefits over traditional actuator 

technologies including lower cost and complexity, higher 

specific strength, and silent actuation. They have yet to see 

widespread adoption, however, partially due to the challenges 

posed by the nonlinearity of the shape memory effect to controls 
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design. To effectively use SMA actuators, it is critical to create 

an accurate model of the material’s behavior that is simple 

enough to be effective as a base for the design of control laws. 

Among the many discovered SMAs, Nitinol (NiTi) is by far the 

most popular material used for actuator design, primarily due to 

its relatively low cost and high availability. Drawing NiTi into 

fine wires makes it possible to heat the material by passing an 

electric current through it, a beneficial property for the design of 

lightweight actuators. For many actuation tasks, the NiTi wire 

actuator is the preferable alloy and form and as such will be the 

focus of this paper. 

The actuation of a NiTi wire actuator is driven by affecting 

the material’s phase fraction, which is a function of stress and 

temperature, and ultimately affects the overall strain of the wire. 

Therefore, it is important when designing control systems for 

these actuators to consider these states. The accuracy of a control 

solution could be greatly increased by adding a measurement of 

stress or temperature to the system. Unfortunately, it is not often 

practical to directly measure the stress or temperature of a typical 

NiTi wire actuator without greatly increasing its cost and size. 

For this reason, it is useful to instead estimate these states within 

the wire, as we have done here. 

This paper presents an introduction to the shape memory 

effect, followed by a review of common phenomenological 

models used to describe the effect. A practical thermo-

mechanical model is then developed with the focus of a real-time 

controls application. Next, the model incorporated into a 

generalized mechanical system and presented in a LPV State 

Space form. From this LPV model, a state estimator is 
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formulated which demonstrates the ability to accurately estimate 

and track both the phase fraction and the temperature of the 

actuator with a strain measurement and known power input. 

Finally, the state estimator is implemented on a physical SMA 

actuator system in conjunction with a simple PID controller as a 

method of tracking and limiting the temperature of the actuator 

to prevent damage from overheating. 

 
BACKGROUND  

 

In Nitinol, the shape memory effect is driven by the 

transition between two distinct crystalline phases. ‘Austenite’- a 

short and stiff structure, and ‘Martensite’ - a comparatively long 

and flexible structure. The material experiences reversible 

crystalline transformation because of changes of stress or 

temperature. At low temperatures or high stresses, the material is 

dominated by Martensite crystals, and can experience a 

reversable strain of around 4%. By applying heat or reducing the 

stress on the material, the martensite crystals transition to 

austenite. At low stress and temperatures, two additional 

crystalline phases can be observed within the material typically 

referred to as ‘Twinned Martensite’, a compacted form of the 

Martensite phase, and ‘R-phase’, which competes with 

Martensite within the material. For actuator design, it is practical 

to operate outside the stress range where these phases form, and 

as such they will not be explored in detail here. An approximate 

representation of the phase diagram for NiTi is presented in 

figure 1. 

 

 
Figure 1: Complete SMA phase diagram. SMA wire actuators are 

designed to operate in the boxed region 

An initial simplifying assumption is that our NiTi Wire actuator 

is under a sufficient amount of pre-load to prevent the formation 

of Twinned Martensite (the area inside a dotted rectangle in 

figure 1). This simplifies the phase diagram significantly, and 

eliminates the ‘R-phase’ region of the material which can 

complicate the electrical characteristics of the wire [1]. The new 

phase diagram is shown in figure 2. 

 

 
Figure 2: The SMA phase diagram for stress above 100MPa 

Typically, the values which describe the transformation regions 

are found experimentally, for example by placing the material 

within a Differential Scanning Calorimeter (DSC) which 

measures heat flow vs. temperature, as can be seen in figure 3. 

 

 
Figure 3: Typical (simulated) DSC experiment shows temperature 

induced phase change from M to A, and back to M from A (with 

constant macroscopic stress) 

Many methods have been presented for the 

phenomenological modelling of Nitinol, varying from one-

dimensional analysis [2, 3] to multi-dimensional mechanics [4, 

5, 6, 7] and finite element approximations [8, 9, 10]. For the 

purposes of dynamic system modelling, it is preferable to utilize 

a one-dimensional model, which offers the best compromise of 

simplicity and accuracy. Especially in the case of NiTi Wire 

actuators, a one-dimensional assumption is acceptable, this can 

be seen in work comparing common models to experimental data 

[11, 12]. 
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Constitutive Model 

Tanaka [13] presents the following equation for the 

constitutive relationship between stress, strain, temperature, and 

phase fraction within the material: 

 

�̇� = 𝐸(𝜉)𝜖̇ − Θ(𝜉)�̇� + Ω(𝜉)𝜉̇ 
( 1 ) 

Where 𝐸 is the Elastic Modulus, Θ is the Coefficient of Thermal 

Expansion, and Ω is the ‘transformation tensor’, all of which are 

functions of the Martensite fraction (𝜉). Liang & Rodgers [14] 

note that this model is only consistent for the following form of 

Ω(𝜉) where 𝜖𝐿 is the maximum shape-memory strain with no 

stress 

 

Ω(𝜉) =  𝜖𝐿𝐸(𝜉) 
( 2 ) 

Brinson and Huang [2] pose that the constitutive model is most 

meaningfully rearranged into the following ‘strain 

decomposition’ form. 

 

𝜖 = 𝐶(𝜉)𝜎 + 𝜖𝐿𝜉 + 𝐶(𝜉)Θ(𝜉)(𝑇 − 𝑇0) 
( 3 ) 

𝐶(𝜉) =
1

𝐸(𝜉)
=
(1 − 𝜉)

𝐸𝐴
+
𝜉

𝐸𝑀
 

( 4 ) 

Additionally, the effect of thermal expansion is small compared 

to the shape memory effect, which is also dependent on 

temperature. For this reason, the constitutive model is often 

simplified further to [15] 

 

𝜖 = 𝐶(𝜉)𝜎 + 𝜖𝐿𝜉 
( 5 ) 

Phase Transformation 

Next, it is important to determine criteria for when the phase 

change is occurring. These transformation conditions are 

typically based on the phase diagram and are a function of the 

stress and temperature of the material. Several condition sets 

have been summarized by Elahinia [16, 17]. Tanaka first used 

the transformation conditions [13] 

 

𝑖𝑓 {
�̇� < 0 𝑎𝑛𝑑 𝜎 ≤ −(𝑇 − 𝐴𝑠)𝐶𝐴
�̇� > 0 𝑎𝑛𝑑 𝜎 ≥ (𝑇 − 𝑀𝑠)𝐶𝑀

} 𝑡ℎ𝑒𝑛 {
𝜉𝑀→𝐴
𝜉𝐴→𝑀

} 

( 6 ) 

Where 𝐴𝑠 and 𝑀𝑠 denote the Austinite and Martensite Start 

temperatures, 𝐶𝐴 and 𝐶𝑀 denote the slopes of the Austenite and 

Martensite transformation lines, and 𝜉𝑀→𝐴 and 𝜉𝐴→𝑀 are used to 

denote the direction that 𝜉 is transforming (from Martensite to 

Austenite, or from Austenite to Martensite respectively). 

Many models bound the transformation to lie only within 

the start and finish conditions [14, 16, 17, 18]. While this is 

physically consistent with thermodynamics, it can be seen from 

DSC experiments that the transformation is continuous at the 

start and finish conditions. Considering this, models for 

transformation criteria can be simplified to depend only on the 

direction of temperature and stress change [19, 20, 21] 

 

𝑖𝑓

{
 

 �̇� −
�̇�

𝐶𝐴
> 0

�̇� −
�̇�

𝐶𝑀
< 0 

}
 

 

𝑡ℎ𝑒𝑛 {
𝜉𝑀→𝐴
𝜉𝐴→𝑀

} 

( 7 ) 

Transformation models using the above criteria can use any 

function of stress and temperature which is bounded between 0 

and 1 for all values of stress and temperature to describe the 

changing phase fraction. The most common model used with 

these criteria is the logistic function [19, 20, 22] which can be 

written as 

𝑤ℎ𝑖𝑙𝑒 {
𝜉𝑀→𝐴
𝜉𝐴→𝑀

} ,

{
  
 

  
 𝜉 =

𝜉𝑀

1 + exp (𝑘 (𝑇 −
𝜎
𝐶𝐴
− 𝐴))

𝜉 =
1 − 𝜉𝐴

1 + exp (−𝑘 (𝑇 −
𝜎
𝐶𝑀

−𝑀))

+ 𝜉𝐴

}
  
 

  
 

 

( 8 ) 

Where k is a fitting parameter determined from DSC testing that 

determines the width of the transformation band, and A and M 

denote the temperature for the center of the Martensite and 

Austenite transformation regions at zero stress. 𝜉𝐴 and 𝜉𝑀 are 

‘history variables’ which track the extent of the phase 

transformation and allow for the reversal of the transformation 

while the phase fraction is not at 0 or 100%.  

 

𝑤ℎ𝑖𝑙𝑒 {
𝜉𝑀→𝐴
𝜉𝐴→𝑀

} , {
𝜉𝐴 = 𝜉
𝜉𝑀 = 𝜉

} 

( 9 ) 

Heat Transfer 

The most convenient way to actuate a NiTi wire actuator is 

to heat it through resistive heating and allow it to cool in open 

air. In this configuration, the energy balance equation of the 

actuator can be written as: 

 

𝑚𝑐𝑝�̇� − 𝑚Δ𝐻𝜉̇ = 𝑃 + 𝐴𝐿𝜎𝜖𝐿𝜉̇ − ℎ𝐴𝑠(𝑇 − 𝑇∞) 
( 10 ) 

where P is electrical power, m is the mass of the wire, 𝑐𝑝 is 

specific heat, Δ𝐻 is the latent heat of transformation, ℎ is the 

convective heat transfer coefficient, 𝐴𝑠 is the surface area of the 

wire, and 𝑇∞ is the ambient air temperature. The primary source 

of energy is electrical power with deformation energy also 

included. Energy is stored in the material as sensible and latent 

heat, and released by convection. Other sources and sinks of 

energy are considered negligible in this case. Some models for 

heat transfer also include radiation as an energy sink [23], but its 
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effect is small compared to convection in many cases and as such 

is ignored.  

THERMO-MECHANICAL MODEL 
  

Using the models presented in the previous section as a 

starting point, it is useful to simplify the equations with the 

purpose of controlling an SMA actuator in mind. The final model 

must compromise between accuracy and computational 

efficiency. Previous estimation models have been developed by 

Crews and Smith which can estimate various properties of a 

SMA material with impressive accuracy [24], but the complexity 

of the model makes it difficult for use in real-time control 

applications. Another model, developed by Elahinia and 

Ashrafiuon [25] can quickly predict the steady state value of 

strain and temperature of a wire, but lacks accuracy in its 

transient response. The following model was developed with the 

intention of being a middle ground between these two models, a 

lightweight model with acceptable accuracy at all points. We 

begin by simplifying the strain constitutive model. 

 

𝜖 =
𝜎

𝐸
+ 𝜖𝐿𝜉 + Θ𝑇 

( 11 ) 

Where 𝐸 is the elastic modulus, 𝜖𝐿 is the maximum shape 

memory strain, and Θ is the coefficient of thermal expansion. 

Because the thermal expansion is small compared to the other 

strain components, it is usually ignored. For controller design, 

the elastic modulus is considered to be constant. It is valuable 

now to rearrange such that stress rate is the dependent variable, 

the first important constitutive equation: 

 

�̇� = 𝐸𝜖̇ + 𝐸𝜖𝐿�̇� 
( 12 ) 

The second equation governs the hysteresis of the crystal 

phase fraction. It is useful to characterize the transformation with 

a population growth equation to represent the propagation of the 

crystal transformation through the material. We chose the 

piecewise logistic function which accurately models the 

hysteresis, with enhancements that ensure the model is 

continuous. During simulation the Martensite phase fraction 

hysteresis behavior can be represented using conditions for 

transformation derived from the phase diagram: 

 

𝑖𝑓 (�̇� −
�̇�

𝛼
> 0)

{
 
 
 

 
 
 𝜉 =

𝜉𝑀

1 + exp (𝑘 (𝑇 −
𝜎
𝛼
− 𝐴))

𝜉𝐴 = (1 − 𝜉)(1 + exp (−𝑘 (𝑇 −
𝜎

𝛼
−𝑀))

𝜕𝜉

𝜕𝑇
= 𝑘 (

𝜉2

𝜉𝑀
− 𝜉)

 

 

𝑖𝑓 (�̇� −
�̇�

𝛼
< 0)

{
 
 
 

 
 
 𝜉 =

1 − 𝜉𝐴

1 + exp (−𝑘 (𝑇 −
𝜎
𝛼
−𝑀))

+ 𝜉𝐴

𝜉𝑀 = 𝜉(1 + exp (𝑘 (𝑇 −
𝜎

𝛼
− 𝐴))

𝜕𝜉

𝜕𝑇
= 𝑘 (

(1 − 𝜉)2

𝜉𝐴
− (1 − 𝜉))

 

( 13 ) 

𝜕𝜉

𝜕𝜎
= −

1

𝛼

𝜕𝜉

𝜕𝑇
 

( 14 ) 

Where 𝐴 (𝑀) is the temperature for the center of Austenite 

(Martensite) transformation with no stress, the slope of the 

transformation centerline for Austenite and Martensite (𝐶𝐴 and 

𝐶𝑀 respectively) are considered equal and denoted by 𝛼, 𝑘 

determines the width (or distribution) of the transformation 

region, and 𝜉A(𝑀) denotes the extent of the previous 

transformation (it drives the hysteresis). The time rate of change 

of 𝜉 is computed using the partial derivatives: 

 

𝜉̇ =
𝜕𝜉

𝜕𝑇
�̇� +

𝜕𝜉

𝜕𝜎
�̇� 

( 15 ) 

In addition to the material model, it necessary to model the 

energy balance between electrical heating power (𝑃 = 𝑉𝐼), wire 

temperature, and ambient air temperature: 

 

𝑚𝑐𝑝�̇� = 𝑃 +𝑚Δ𝐻𝜉̇ + 𝐴𝐿𝜎𝜖𝐿𝜉̇ − ℎ𝐴𝑠(𝑇 − 𝑇∞) 
( 16 ) 

Where 𝑚 is the SMA mass, 𝑐𝑝 the specific heat, ℎ is the heat 

transfer coefficient, 𝛥𝐻 is the latent heat of transformation, and 

𝐴𝑠 is the wire surface area. Many SMA materials have a response 

that is nearly independent of stress. Also, in many applications 

the stress of preloading is large compared to dynamic load 

variations. In these cases, the material model is simplified, when 

designing controllers, to assume stress cannot affect the phase 

fraction (there is no super-elastic behavior), resulting in the 

following simplification to equation (15): 

 

𝜉̇ =
𝜕𝜉

𝜕𝑇
�̇� 

( 17 ) 

This reduces the complexity of (16) greatly: 

 

(𝑚𝑐𝑝 −𝑚Δ𝐻
𝜕𝜉

𝜕𝑇
) �̇� = 𝑃 − ℎ𝐴𝑠(𝑇 − 𝑇∞) 

( 18 ) 
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Notice that the effect of transformation effectively changes 

the thermal mass in an otherwise linear ODE. Equations (12), 

(13), (17), and (18) provide a complete thermo-mechanical 

model for controls design and analysis. 

It is acceptable to ignore the effect of stress on the phase 

fraction when an SMA actuator is used to control a reasonable 

payload, because the temperature is the primary driver of phase 

change. This can be seen in a simple demonstration where a 

constant power is applied to heat an actuator that is driving a 

spring-mass-damper (Figure 4). It was shown in (15) that phase 

change rate is comprised of stress and temperature components. 

In a simulation, the phase change rate is tracked as well as these 

two components. The temperature component (red) has a much 

larger effect than stress (blue); the total phase change (black) is 

almost equal to the temperature component alone.  

 

 
Figure 4: The phase change rate (black) is comprised of stress (blue) 

and temperature (red) components. Temperature is the primary driver 

of phase change for actuators, not stress 

SYSTEM MODEL 
 

Consider an SMA wire controlling the position of a linear 

spring-mass-damper system with external preload or disturbance 

force. This general model can represent many physical systems 

such as robot arm joints, linear positioning systems, etc. Based 

on the simplified equations just reviewed, the conventional and 

physical view of the SMA actuator control system is shown in 

Figure 5. This model has an SMA wire connected between a 

fixed wall and the spring-mass-damper plant. The actuation 

arises from change in the internal state of the material. 

 
Figure 5: A system model which isolates the SMA actuator from the 

plant 

However, the change of internal material states is not often 

intuitive. For clarity, the system can be reformed into an 

equivalent mechanical system as in Figure 6. This model breaks 

the single SMA material with internal material changes into two 

parts; the inelastic ‘shape memory strain’, and an elastic spring. 

This view of the system makes it clear where the nonlinearity 

occurs (between temperature change and crystal phase fraction), 

and eliminates the need to keep stress as a state variable. 

 

 
Figure 6: An equivalent system model presented in a form useful for 

controller design 

 

The full system model can now be presented in LPV state 

space form. The SMA actuator is represented as an elastic spring 

with a spring rate of 𝐾𝑆𝑀𝐴 being pushed by the shape-memory 

strain (𝜖𝐿𝜉). The model is of the form 

 

{

�̇�
�̈�
𝜉̇

�̇�

} = 𝐴{

𝑥
�̇�
𝜉
𝑇

} + 𝐵 ∗ 𝑃 
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𝐴 =

[
 
 
 
 
 
 
 

0 1 0 0

−
𝐾 + 𝐾𝑆𝑀𝐴

𝑀
−
𝐵

𝑀

𝐾𝑆𝑀𝐴𝐿𝜖𝐿
𝑀

0

0 0 0 −
ℎ𝐴𝑠

𝜕𝜉
𝜕𝑇
𝑄

0 0 0 −
ℎ𝐴𝑠
𝑄 ]

 
 
 
 
 
 
 

 

 

𝐵 =

[
 
 
 
 
0
0

𝜕𝜉

𝜕𝑇
/𝑄

1/𝑄 ]
 
 
 
 

 

 

𝑄 ≡ 𝑚𝑐𝑝 −𝑚Δ𝐻
𝜕𝜉

𝜕𝑇
 

( 19 ) 

 

The only varying parameter is the partial derivative of phase 

fraction with respect to temperature. This parameter takes on a 

value in the range 

 

−
𝑘

4
<
𝜕𝜉

𝜕𝑇
< 0 

 

This parameter has a minimum in the center of phase change 

where a small change in temperature greatly affects the phase 

fraction. The parameter is near zero when the temperature is far 

from the transformation range, and when the hysteretic phase 

change direction has recently reversed. This varying parameter 

affects the apparent dynamics of the system greatly as can be 

seen in a ‘snapshot’ pole-zero map in figure 7. When 
𝜕𝜉

𝜕𝑇
 is near 

zero (far from the transformation region), the pole of the 

temperature response (which moves along the real axis) is at its 

fastest. Inversely, when 
𝜕𝜉

𝜕𝑇
 is near 

−𝑘

4
 (at the center of the 

transformation region) the temperature response of the material 

is slow, as the phase transformation absorbs the incoming power. 

 

 
Figure 7: Pole locations for the given system model 

Consider a ‘snap-shot’ of this model where 𝜕𝜉⁄𝜕𝑇 is frozen 

(though not rigorous in general, this is fair since the nonlinearity 

is first order with negative definite eigenvalue [26]). The model 

is observable, but not controllable. The lack of controllability can 

be seen in two ways. Mathematically, the third and fourth rows 

of 𝐴 are clearly not linearly independent. This leads to a 

controllability matrix with rank 3 – proving the system is not 

controllable for any value of 𝜕𝜉⁄𝜕𝑇. As a practical interpretation, 

it is easy to see that we cannot drive the system to have both a 

unique temperature and unique phase fraction simultaneously 

because temperature and phase fraction are constitutively 

coupled. The system can, however, be controlled with a reduced 

order model. 

STATE ESTIMATOR 
 

The LPV model was used to create a state estimator. This 

estimator has gains designed based on pole placement, with the 

estimator time constants selected to be more than ten times faster 

than the closed-loop system behavior, so that the estimator does 

not interfere with the control transient response. The estimator is 

implemented using: 

 

�̇̂� = �̅��̂� + �̅�𝑢 + 𝐿(𝑦 − �̂�), �̂� = 𝐶̅�̂� 

or 

�̇̂� = (�̅� − 𝐿𝐶̅)�̂� + �̅�𝑢 + 𝐿𝑦 

If the assumed model (�̅�, �̅�, 𝐶̅) and the exact system (𝐴, 𝐵, 

𝐶) coincide, then the dynamics of the error are determined by: 

 

𝑒 ≡ 𝑥 − �̂� 

�̇� ≡ �̇� − �̇̂� 

�̇� = (𝐴 − 𝐿𝐶)𝑒 

 

Consider an example SMA wire actuator of 0.125mm 

diameter. The natural pole of the temperature response is 𝜆𝑇 = 

−0.7228 (1/s). The estimator is designed using poles that are 

faster than ten times this: 𝑅𝑒𝑎𝑙(𝜆𝑒𝑠𝑡) < −7.228. In the simulations 
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presented below, estimator closed loop poles were chosen to be 

negative real, all faster than this minimum speed.  

In practice, the estimator gain is too complex to recompute 

(on a microcontroller) after each sample while the controller is 

running. However, the state transition matrix 𝐴 and input gain B 

can only be updated if 𝜕𝜉⁄𝜕𝑇 is known or is estimated. There are 

three ways to address this: by using a constant matrix that 

represents the average properties, by switching between a few 

controllers based on the region of operation, or by continually 

adjusting the state model as the system varies. The first method 

is only reliable for the states that are not derivatives of nonlinear 

terms – so it can track the position, speed, and phase fraction 

accurately, but not temperature. However, using the gain 

scheduled estimator, the temperature and all other states are 

accurately recovered after initial offsets are removed by the 

estimator. A simple (poorly tuned) PI controller is used to 

demonstrate both estimators in simulation. The complete non-

linear thermomechanical models presented at the beginning of 

the paper were used as the physical system, and the LPV model 

developed in this chapter was used for the estimator design. 

Figure 8 demonstrates the estimator using average properties, 

and Figure 9 demonstrates the gain-scheduled estimator. Both 

estimators accurately track the position and phase fraction. Both 

struggle to track temperature when far from the transformation 

region (where 𝜉 is changing and 𝜕𝜉⁄𝜕𝑇 is near zero). The average 

constant-coefficient model cannot accurately determine 

temperature. The gain scheduled controller can accurately track 

temperature once initial errors are eliminated, as expected. 

 

 
Figure 8: Estimator using average properties accurately estimates 

phase fraction but does not accurately track the temperature due to 

ignored nonlinearities 

 
Figure 9: Estimator using gain-scheduling still struggles when far 

from the transformation region, but quickly tracks all state variable 

during transients 

APPLICATION 
 

The state estimator was implemented in conjunction with a 

position-based PID controller to drive the angle of a simple 

robotic arm from 30 to 60 degrees (Figure 10). The only sensor 

attached to the device was an angular potentiometer for 

measuring the position of the arm, while the power provided to 

the wire was the controlled input. After a few cycles to ensure 

that the PID control was tracking the reference appropriately, a 

physical stop was added into the path of the arm at about 45 

degrees. To overcome the error between position and the 

reference, the PID controller tries to continue increasing the 

power to the wire, thus driving its temperature into a dangerous 

range for the wire and the components around it. However, when 

the estimated temperature reaches a defined limit, the power 

output of the controller is limited to prevent the wire from getting 

any hotter. The entire process is shown in Figure 11. This 

temperature ‘watchdog’ allows the device to operate across a 

wide variety of speeds and loads without the risk of damaging 

the NiTi wire actuator or any of the surrounding components. 
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Figure 10: Robotic arm device controlled by a NiTi wire actuator 

 

 
Figure 11: PID controller with temperature estimation. A physical stop 

is added to the system at 11 seconds 

CONCLUSION 
 

Presented here is a linear parameter varying state space 

model for the simulation of NiTi wire actuators. While this 

model is not controllable, it is fully observable, and as such is 

useful for the creation of a state estimator which can predict the 

phase fraction and temperature of the wire. Both states are 

difficult to measure for thin NiTi wires, especially in the context 

of actuator design, where adding additional sensors to the system 

is not ideal. As such, the ability to approximate these states 

allows for more complex and accurate control methods without 

additional cost to actuator design. 

In practice, the estimator uses a gain calculated from 

average properties running alongside a main control law on a 

microcontroller. It can quickly and accurately estimate phase 

fraction, and provides a reasonable approximation of 

temperature. These approximations can be utilized to augment 

the control of the system, for instance by limiting the temperature 

of the wire to a safe level. 

The presented model ignores some nonlinearities of the 

system that are largely affected by unexpected disturbances to 

the system, such as a change in h due to changing air velocity, or 

large changes in the stress acting on the material. An improved 

model could account for these disturbances and the states could 

be estimated via an Extended Kalman Filter or other nonlinear 

estimation techniques. 
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